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Introduction to Physical Oceanography
Homework 2 - Solutions

1. Abyssal recipes

(a) Figure 1 shows the vertical temperature profile at two different locations in the Pacific
ocean, (a) near the equator at (0.5◦S, 179.5◦E); (b) at (45.5◦N, 160.5W ).
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Figure 1: Vertical temperature profile of the Pacific ocean (a) at (0.5◦S, 179.5◦E); (b) at
(45.5◦N, 160.5W).

(b) I will describe two different way to fit the vertical temperature profile from a depth of
500m to the bottom of the ocean.
Matlab has a very nice built-in function to perform linear Least Squares Fitting. If you
are not familiar with least squares fitting, you might want to check
“http://mathworld.wolfram.com/LeastSquaresFitting.html”
for a short description of the method. We wish to fit the temperature from a depth of
500m to the bottom of the ocean using an exponential function of the form T (z) =
T0 +a · e−z/H . The values of T0 are found graphically (see Figure 1). My Matlab code
as well as the data I used are posted on the course website if you wish to follow the
procedure I used to fit this data. The results obtained for H are the following: at the
equator, H = 704.2254m, while at 45◦N H = 744.6016m. The results for this fit are
shown in Figure 2.
Another way to fit the data, less rigorous than least squares fit but good enough as a first
approximation is described here. We can evaluate T0 as previously mentioned from the
graph: at the equator T0 = 1.2585◦C and at 45◦N T0 = 1.5170◦C.
We wish to fit the data to exponential function of the form T (z) = T0 + a · exp(z/H).
From this data set, the temperature at a depth of 500m is found to be equal to: T (z =
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Figure 2: Vertical temperature profile of the Pacific ocean from the data (blue line) and using a
least squares fit (green line) (a) at the equator; (b) at 45◦N.

500m) = 8.2359◦C at the equator and and to T (z = 500m) = 4.2564◦C at 45◦N. Using
these values as well as the values for T0 we get: a ·exp(500/H)= 6.9774 at the equator;
and a∗ exp(−500/H) = 2.7394 at 45◦N.
We still need to find the coefficients a and H. Let find the temperature at a depth of
z = 500+H, such that

T (500+H) = T0 +a · e−
500+H

H = T0 +a · e−
500
H · e−1 (1)

Using the values for a · e−
500
H found previously, we get T (500 + H) = 3.8253◦C at the

equator and T (500 + H) = 2.5248 ◦C at 45◦N. From our plots, we find that these
temperatures correspond to a depth of approximatively 1200m at the equator, and to a
depth of 1300m at 45◦N. This leads to values for H equal to H = 700m and H = 800m
at the equator and at 45◦N respectively. Finding a is now pretty easy: at the equator
a = 14.2529 and a = 5.1179 at 45◦N. Figure 3 shows the results for this fit. . . not too
bad!
In class, we derived an equation for the temperature. We made several different as-
sumptions: the density of the ocean is nearly constant, the temperature of the ocean
is in a steady state (∂T/∂t = 0), the temperature is only a function of z and finally we
assumed that no heating or cooling from the atmosphere can affect the temperature at a
depth below 500m. From these assumptions, we found that the vertical equation for the
temperature results in a balance between vertical eddy mixing and vertical advection
such that

w
∂T
∂z

= κ
∂2T
∂z2 (2)

leading to the following scaling for κ

κ = H w (3)
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Figure 3: Vertical temperature profile of the Pacific ocean from the data (blue line) and using the
2nd fit (green line) (a) at the equator; (b) at 45◦N.

Using the value w = 10−4cm · s−1 and those obtained for H, I found κ = 7 · 10−4m2
·

s−1
≈ 7cm2

· s−1 at the equator and κ = 8 ·10−4m2.s−1
≈ 8cm2.s−1 at 45◦N.

For a given w, we found different values for κ at 2 different locations in the Pacific
ocean. Therefore for a constant vertical velocity, we cannot fit our profiles with similar
coefficients for eddy mixing. κ is a function of location, it depends on depth, topog-
raphy... depending on different physical mechanisms taking place in the ocean. In
addition, w is also not uniform in the ocean and varies as function of location.

2. Consider an accelerating fluid parcel flowing along the center of slowly narrowing channel.
The velocity is given by

~u = (u(x),0,0) . (4)

(a) The width of the channel is W = W0/x, we assume that the depth H is constant and the
volume flux F is constant along the channel such that

F = velocity · Area = constant

F = u(x) ·W ·H = W0H
u(x)

x
,

the Eulerian velocity is therefore given by

u(x) =
F · x
W0H

. (5)

The Eulerian velocity is simply linearly increasing with x (and does not depend on
time). This results is physically consistent with the fact that the width of the channel is
proportional to 1/x.
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(b) To find the Lagrangian location x(t;x0) of a fluid parcel which was at x0 at t = 0, we
need to integrate the velocity field

dx
dt

= u(x) =
F · x
W0H

Z x

x0

dx
x

=

Z t

0

F
W0H

dt

The result of this integration leads to the Lagrangian trajectory

x(t;x0) = x0e
F

W0H t (6)

(c) Now that the Lagrangian trajectory was found, the Lagrangian velocity is given by

u(t;x0) =
dx(t;x0)

dt
=

F
W0H

x0e
F

W0H t (7)

and the Lagrangian acceleration by

a(t;x0) =
du(t;x0)

dt
=

(

F
W0H

)2

x0e
F

W0H t (8)

(d) In this question, we are asked to find the acceleration by taking the material derivative
of the Eulerian velocity

a(x, t) =
du(x, t)

dt
=

∂u
∂t

+u
∂u
∂x

a(x, t) =
∂
∂t

(

F · x
W0H

)

+

(

F · x
W0H

)

∂
∂x

(

F · x
W0H

)

Since the Eulerian velocity is steady ( ∂u
∂t = 0, the local rate of change of the velocity at

a fixed location is 0), the acceleration is then

a(x, t) =

(

F
W0H

)2

x (9)

If we substitute x = x0e
F

W0H t in the last expression for a(x, t), we see that the 2 results
agree.

3. Challenge Problem: the Eulerian velocity field is given by

u1 = U0

u2 = V0cos(k [x1 − ct])
u3 = z0
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Figure 4: Streamlines of the flow at t=10.

(a) Streamlines of the flow (lines tangent to the velocity at a given time)

dx2

dx1
=

u2

u1
=

V0cos(k [x1 − ct])
U0

Z x2
dx2 =

V0

U0

Z x1
cos(k [x1 − ct])dx1

leading to

x2 =
V0

U0k
sin(k [x1 − ct])+C (10)

The streamlines are shown in Figure 4 for t = 10.

(b) Trajectory of a fluid element which was at (X1,X2,X3) at t = 0.
For x3 it is pretty straightforward:

x3 = X3 (11)

To find the trajectory of x1(t;X1) and x2(t;X2), we must integrate the velocity field:

dx1

dt
= u1 = U0 ⇒

Z x1

X1

dx1 =

Z t

0
U0dt (12)

The trajectory of the parcel in the x1 direction is given by

x1 = U0t +X1 (13)

We can repeat the same procedure to find x2(t;X2)

dx2

dt
= u2 = V0cos(k [x1 − ct]) (14)

Using our results for x1(t;X1),

dx2

dt
= V0cos(k [X1 +(U0 − c)t]) ⇒

Z x2

X2

dx2 =

Z t

0
V0cos(k [X1 +(U0 − c)t])dt
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Figure 5: Lagrangian trajectory

We obtain

x2 = X2 +
V0

k(U0− c)
[sin [k((U0− c)t +X1)]− sin(kX1)]

x2 =
V0

k(U0− c)
sin [k((U0− c)t +X1)]+X2 −

V0

k(U0− c)
sin(kX1)

To summarize, the trajectory of a fluid element which was at (X1,X2,X3) at t = 0 is
given by

x1 = U0t +X1

x2 =
V0

k(U0− c)
sin [k((U0− c)t +X1)]+X2 −

V0

k(U0− c)
sin(kX1)

x3 = X3

Figure 5 shows the trajectory as a time series for x1 and x2 as function of time as well
as the trajectory of the fluid element in the x1 − x2 plane.

(c) Wavelength of the Eulerian streamlines:
The wavelength is the distance between repeating points of a periodic wave (for exam-
ple, the distance between two consecutive crests) such that at any given time τ we have
x2(x1 +λ) = x2(x1).
From our previous results, we can write

x2(x1,τ) =
V0

U0k
sin(k [x1 − cτ])+C =

x2(x1 +λ,τ) =
V0

U0k
sin(k [x1 +λ− cτ])+C

x2(x1 +λ,τ) =
V0

U0k
sin(kx1 + kλ− kcτ)+C
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leading to
kλEulerian = 2π (15)

Therefore the wavelength of the Eulerian streamlines is given by λEulerian = 2π/k.

(d) The wavelength of the Lagrangian trajectory is given by the distance traveled by a fluid
element in the x1-direction between two consecutive crests.
The period of time T to travel between two consecutive crests satisfies: x2(t) = x2(t +
T ) such that

x2(t) =
V0

k(U0− c)
sin [k((U0 − c)t +X1)]+X2 −

V0

k(U0− c)
sin(kX1) =

x2(t +T ) =
V0

k(U0− c)
sin [k((U0 − c) · (t +T )+X1)]+X2 −

V0

k(U0− c)
sin(kX1)

x2(t +T ) =
V0

k(U0− c)
sin [k(U0 − c)t + k(U0− c)T + kX1]+X2 −

V0

k(U0 − c)
sin(kX1)

Therefore the period T is given by

T =
2π

k(U0− c)
(16)

The Lagrangian trajectory by definition will be the velocity of a fluid element in the
x1-direction times the period T :

λLagrangian = U0T =
2πU0

k(U0− c)
(17)

or
λLagrangian =

U0

U0− c
λEulerian (18)

(e) For U0 − c << U0, we have U0
U0−c >> 1 such that λLagrangian >> λEulerian. For this

particular case where U0 − c << U0 (equivalent to U0 ≈ c), the fluid parcels oscillate
very slowly compared to the streamlines of the flow. You can compare the plots above
that I’ve draw for this specific case. The Matlab code for the plots is on the course
homepage.
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