
Applied Mathematics 120:
Applied Linear Algebra and Big Data

Extended syllabus (most recent version available here)

FAS course web page: https://canvas.harvard.edu/courses/94070 (Spring 2022)
Last updated: Thursday 12th May, 2022, 23:52.

1 Administrative

Instructor: Eli Tziperman (eli@seas.harvard.edu); Head TFs: Elle & Xiaoting. TFs:
Cat, Ella, Emily, Esme, Hari, Isha, Jennifer, Kevin, Kostas, Mustafa, Scott. Feel
email or visit us with any questions.

Day, time & location: Tue, Thu 1:30–2:45, Jefferson 250.

Office hours: Each of the teaching staff will hold weekly office hours, see course web page
for times & place. Eli’s office: 24 Oxford, museum building, 4th floor, room 456.

Course resources:
1. Course notes, see Dropbox link and password on canvas course page.
2. Supplementary materials : Matlab/ python class & HW demos. (A) Dropbox

link on canvas; or (B) Harvard link, requires FAS VPN from outside campus.
3. The detailed syllabus lists material used for each lecture.

Course materials are the property of the instructors or other copyright holders, are
provided for your personal use, and may not be distributed or posted on any websites.

Prerequisites: Applied/Math 21a and 21b or equivalent; CS50, APM10, or equivalent.

Computer Skills: Programming experience is expected, and homework assignments
involve significant code writing; you may use either Matlab or python.
Using Matlab: install from FAS software downloads. For a Matlab refresher,
register in advance to the Matlab boot camp, 3 lectures at the start of the term.
Using python: Install anaconda for python 3.8. Course demos have been tested by
running tom from a terminal. Python is a great way to go and is fully supported in
APM120, yet some of its packages are a bit more complicated to install and require
some Googling and a hacker-spirit. . . :-)

Sections/ weekly HW help sessions: Monday 5–7 pm, or as advertised, in the EPS
faculty lounge on the 4th floor of Hoffman, 20 Oxford St. Please come to work on the
homework assignments, ask questions, and to offer help to others.

In-class mini-quizzes: Login to polleverywhere.com using your Canvas email and set up
a new password. Respond to in-class polls at pollev.com/apm120 or using their app.
In-class participation is a component of the course grade.

Homework assigned every Tuesday (Canvas/Files/), due the following Tuesday, 1 pm.
Practicing the lecture material via the weekly HW assignments is the only way to
become comfortable with the subjects covered. Solutions are released weekly.
• Course forum: Please post questions regarding HW/ quizzes to the course forums

1

http://www.seas.harvard.edu/climate/eli/Courses/APM120/2022spring/detailed-syllabus-apm120.pdf
https://canvas.harvard.edu/courses/94070
http://www.seas.harvard.edu/climate/eli
mailto:eli@seas.harvard.edu
http://www.seas.Harvard.edu/climate/eli/Courses/APM120/Sources/
http://downloads.fas.harvard.edu/download?platform=all
http://www.seas.harvard.edu/climate/eli/Courses/APM120/2022spring/detailed-syllabus-apm120.pdf
http://downloads.fas.harvard.edu/download?platform=all
https://wiki.harvard.edu/confluence/pages/viewpage.action?spaceKey=fasmatlab&title=MATLAB+Boot+Camp+Home
https://www.anaconda.com/download/
https://www.polleverywhere.com/
https://pollev.com/apm120

(piazza.com/harvard/spring2022/apmth120), rather than emailing the teaching staff.
You are very welcome to respond to other student questions.
• Electronic homework submission via www.gradescope.com/courses/279667: Your
submission, including code and figures, should not exceed 20 Mb or 30 pages. It may
be typeset or scanned but must be clear, easily legible, and correctly rotated. A scan
using a phone app (e.g., this) may be acceptable if done carefully. Upload different
files for the different questions, or upload a single pdf and tag which pages contain
answers to which question; see tutorial video. Unacceptable scans could lead to a
rejection of the submission or to a grade reduction of 15%. Late submissions would
lead to a reduction of 2% per minute after the due time.

Quizzes, final, in-class mini-quizzes, grading: two evening quizzes,

1. Wednesday, March 2, 2022, 6:30–9 pm EST
2. Wednesday, April 6, 2022, 6:30–9 pm EST

Contact Eli when these are announced, about 10 days before these dates, if you have
any conflicts. Homework, quizzes, and the final contain extra credit problems that
can bring the grade to 110 out of 100. Mini-quizzes during class involve responding to
multiple-choice questions via Poll-Everywhere, after a discussion among the students,
with repeated opportunities to vote; credit for mini-quizzes requires answering 75%
correctly and is split between the periods before and after spring break.

Regrading: Homework and quiz grades are posted to canvas; please come to Eli’s office
hours within 7 days of the release of grades if you see a problem. Please approach
(email/visit) Eli rather than the TFs with any grading issues. Grading:

HW = min
(

100, mean{homework assignments, ignoring lowest grade}
)

mini-quizzes = 50 if answered 75% of in-class mini-quizzes until
spring break, 0 otherwise; 50 more for classes after spring break

Course grade = min
(

100, 0.35×HW+0.15×min(100,quiz1)+0.15×min(100,quiz2)

+ 0.30×min(100,final)+0.1×mini-quizzes
)

The total maximum # of points is 105, and the maximum course grade is 100. Then,
A: ≥ 94, A−: ≥ 89, B+: ≥ 83, B: ≥ 75. . . The course may be taken pass/fail only in
unusual circumstances and with instructor approval during the first week of classes.

Collaboration policy: We strongly encourage you to discuss and work on homework
problems with other students and with the teaching staff. However, after discussions
with peers, you need to work through the problems yourself and ensure that any
answers you submit for evaluation are the result of your own efforts, reflect your own
understanding, and are written in your own words. In the case of assignments
requiring programming, you need to write and use your own code; code sharing is not
allowed. You must cite any books, articles, websites, lectures, etc. used.

Textbooks: [Str:] Strang, G, Linear Algebra and its Applications, 4th ed., 2006 (see also
this&this); [MMD:] Leskovec, Rajaraman and Ullman, “Mining of Massive
Datasets ;” [Nielsen:] Michael Nielsen, “Neural networks and deep learning .”

2

http://piazza.com/harvard/spring2022/apmth120
https://www.gradescope.com/courses/279667
https://www.thegrizzlylabs.com/genius-scan/
https://help.gradescope.com/article/ccbpppziu9#submitting_a_pdf
https://www.polleverywhere.com/
https://www.amazon.com/Linear-Algebra-Its-Applications-4th/dp/0030105676
http://math.mit.edu/~gs/linearalgebra/
http://math.mit.edu/~gs/learningfromdata/
http://infolab.stanford.edu/~ullman/mmds/book.pdf
http://infolab.stanford.edu/~ullman/mmds/book.pdf
http://neuralnetworksanddeeplearning.com/

Contents

1 Administrative 1

2 Outline 3

3 Syllabus 3
3.1. Introduction, overview . 3
3.2. Linear equations . 3
3.3. Eigenvalues, eigenvectors . 4
3.4. Principal component analysis, Singular Value Decomposition 6
3.5. Similar items and frequent patterns . 8
3.6. Unsupervised learning: cluster analysis . 9
3.7. Supervised learning: classification . 11
3.8. Review . 14

2 Outline

Topics in linear algebra which frequently arise in applications, especially in the analysis of
large data sets: linear equations, eigenvalue problems, linear differential equations,
principal component analysis, singular value decomposition, data mining methods
including frequent pattern analysis, clustering, classification, and machine learning,
including neural networks and random forests. Examples will be given from physical
sciences, biology, climate, commerce, the internet, image processing, and more.

Please see here for a presentation with a review of example applications.

3 Syllabus

Follow links to see the source material and Matlab/python demo programs used for each
lecture under the appropriate section of the course downloads web page. Grayed subjects
below are not covered this year.

1. Introduction, overview. Sources.
We’ll discuss some logistics, the course requirements, textbooks, provide an overview
of the course, what to expect and what not to expect (presentation).

2. Linear equations. Sources. Notes: chapter 2.

(a) Notation

(b) Motivation: matrices and linear equations arise in the analysis of electrical
networks, chemical reactions, large ones arise in network analysis, Leontief
economic models, numerical finite-difference solution of PDEs, and more.

3

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/01-Introduction/apm120-intro.pptx
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/01-Introduction/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/01-Introduction/apm120-intro.pptx
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/

(c) Medical tomography as an example application of linear equations, which may
lead to either under or over-determined systems (notes, section 2.1.1).

(d) Reminder: row and column geometric interpretations for linear equations
Ax = b, aijxj = bi (notes §2.2; 2d example;
geometric interpretation of linear eqns in 3d.m/py). Solving linear
equations using Gaussian elimination and back substitution (Str§1.3). Cost
(number of operations, Str§1.3).

(e) Solution of large linear systems via direct vs iterative techniques

i. Direct method: LU factorization (notes §2.4; Str§1.5, see Matlab/python
demos of both a detailed hand-calculation for a 3×3 matrix and a using
library routines here. More on why the LU decomposition algorithm works
in notes §2.4.5 and in why LU works.txt demo, or in chapters 20, 21
of Trefethen and Bau III (1997).

ii. Iterative projection methods: algebraic reconstruction technique (notes
§2.6.2, aka the Kaczmarz method).

iii. Iterative relaxation methods: Jacobi, Gauss-Seidel, SOR (notes §2.6;
Str§7.4; a code with an SOR example.m/py, and SOR derivation notes;
convergence is further discussed in notes by RAPETTI-GABELLINI
Francesca, and typically systems based on matrices that are either
diagonally-dominant, or symmetric positive definite, or both, tend to
converge best).

(f) Does a solution exist and is it sensitive to noise/ round-off error? (notes §2.8,
Str§1.7). Two examples from showing the effects of ill conditioned matrix and
of using wrong algorithm even with a well conditioned matrix.

(g) Dealing with huge systems:

i. Special cases: sparse, banded and diagonal matrices (notes §2.10.1;
wikipedia and sparse matrix example.m/py) Bad news: LU factorization
of a sparse matrix is not necessarily sparse (example:
LU of sparse matrix.m/py), so it might be best to use an iterative method
to solve the corresponding linear system of eqns. This may be alleviated by
some degree using complete (full) pivoting.

ii. Google’s MapReduce (Hadoop) algorithm: general idea and word-count
example (notes §2.10.3; MMD§2 intro, pp 21–22). Additional Examples:
(i) finding mutual friends on Facebook; (ii) calculating mean daily flight
delays; (iii) matrix-matrix multiplication using one MapReduce step. Code
examples: here. The more efficient two step approach to matrix
multiplication (MMD§2.3.9). The story behind the development of
MapReduce: here.

3. Eigenvalues, eigenvectors. Sources. Notes: chapter 3.

4

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/1-notation-basics-and-geometric-interpretation/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/2-direct-solution/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/2-direct-solution/why_LU_works.txt
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/3-iterative-solution/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/3-iterative-solution/SOR.pdf
http://math.unice.fr/~frapetti/CorsoF/cours3.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/4-sparse-matrices/sparse_matrix-wikipedia.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/4-sparse-matrices/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/4-sparse-matrices/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/5-MapReduce
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/02-Linear-equations/5-MapReduce/popular-press
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/

(a) Motivation: Google’s PageRank; partitioning (clustering) of graphs/ networks;
differential equations and explosive development of weather systems.

(b) Reminder: Eigenvalue problems Ax = λx, finding eigenvalues through
det(A− λI) = 0, then finding eigenvectors by solving (A− λiI)ei = 0 (Str§5.1).
Similarity transformation S−1AS and diagonalization of matrices with a full set
of eigenvectors (Str§5.2) and of symmetric matrices (Str§5.6, 5S).

(c) Google’s PageRank algorithm: (notes §3.2) First, Google vs BMW: here.
Modeling the Internet via a random walker and the PageRank algorithm from p
1–7 here. See demo codes. It turns out that PageRank is the eigenvector with
the largest eigenvalue of the transition matrix. The theoretical background,
proving that there is a PageRank and that it is unique is the Perron-Frobenius
theorem stating that a stochastic matrix (each row sums to one) with all
positive elements has a single largest eigenvalue equal to one. See Wikipedia for
the theorem and for stochastic matrices;

(d) Power methods (notes §3.4)

i. Calculating the largest eigenvalue/ vector;

ii. Calculating the largest p eigenvalues/ vectors of a normal matrix with
orthogonal eigenvectors using the block power method (example code:
block power method example.m/py)

iii. Inverse power method: calculating the smallest eigenvalue/ eigenvector;

iv. The shifted inverse power method (notes §3.4.5; Str§7.3).

v. Deflation methods for calculating the next eigenvalues/vectors (notes
§3.4.6): Hotelling deflation for orthogonal eigenvectors; Wielandt deflation
for the more general case (eigenvalues only). Extracting eigenvectors as
well, and the actual deflation of the matrix.

(e) Spectral clustering (partitioning) of networks via eigenvectors of corresponding
Laplacian matrices (notes §3.6)

i. Preliminaries: More on networks and matrices: Transition matrix was
covered already as part of the PageRank algorithm above (MMD example
5.1, p 166). Adjacency matrix (example 10.16, p 363), Degree matrix
(example 10.17, p 364), Laplacian matrix (example 10.18, p 364).

ii. Spectral clustering (code, network classification example.m/py and
notes, expanding on MMD§10.4.4 and example 10.19, pp 364-367).

(f) Solving large eigenvalue problems efficiently: QR (Gram-Schmidt) factorization
and Householder transformations (Str§7.3)

(g) Generalized eigenvalue problems (notes §3.11) Ax = λBx, arise in both
differential equations and in classification problems (see later in the course). If
A,B are symmetric, it is not a good idea to multiply B−1 to obtain a standard
eigenproblem because B−1A is not necessarily symmetric. Instead, transform to

5

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/1-Google-PageRank/1-Google-vs-BMW
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/1-Google-PageRank/2-Investigating-Googles-PageRank-algorithm.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/1-Google-PageRank/
http://en.wikipedia.org/wiki/Perron-Frobenius_theorem
http://en.wikipedia.org/wiki/Stochastic_matrix
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/2-power-method/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/3-network_classification/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/3-network_classification/notes-network-classification-using-Laplacian-matrix.pdf

a regular eigenvalue problem using Cholesky decomposition (code,
Generalized eigenvalue problem.m/py, and notes).

(h) Linear ordinary differential equations and matrix exponentiation (notes §3.8;
Str§5.4, remark on higher order linear eqns, heat PDE example on).
Eigenvalues and stability (Str§5.4; phase space plots and Romeo and Juliet
from Strogatz (1994) §5.3). Matlab/python demos: first run love affairs(1) and
then run all ODE examples.m/py. Emphasize that solution behavior is
determined by real and imaginary part of eigenvalues.

(i) Dramatic surprises on the path to tranquility: Non-normal matrices, transient
amplification and optimal initial conditions (notes §3.9, and code,
non-normal transient amplification.m/py).

(j) Jordan form and generalized eigenvectors: when a straightforward
diagonalization using standard eigenvectors doesn’t work because they are not
independent (notes §3.13)

i. A simple example of the issue using the beginning of the demo code
Jordan demo.m/py.

ii. Definition and statement of the ability to always transform to a Jordan
normal form (Str, 5U).

iii. Second order ODE equivalent to a first-order set in Jordan form, that leads
to a resonant solution, see notes.

iv. How to find the Jordan form using the matrix of generalized eigenvalues
detailed example of a simple case. (Time permitting: additional details in
Str App B; and in notes on the more general case by Enrico Arbarello).

v. Extreme sensitivity to round-off error: demonstrated by final part of above
Matlab/python demo.

vi. (Time permitting:) Proof by recursion that a Jordan form can always be
found is also in Str Appendix B.

4. Principal component analysis, Singular Value Decomposition. Sources.
Notes: chapter 4.

(a) Motivation: dimension reduction, e.g., image compression, face recognition, El
Niño; comparing the structure of folded proteins; more unknowns than equations

(b) Principal Component Analysis (PCA; also known as Factor Analysis or
Empirical Orthogonal Functions): calculation from covariance matrix
(notes §4.1).

(c) Singular Value Decomposition (SVD): statement, examples, and practical hints
for calculating the SVD decomposition, X = UΣVT (notes §4.3.1; Str§6.3
including remarks 1,2,4,5 and examples 1,2; note that Aui = σivi and
ATvi = σiui these are therefore “right and left eigenvectors”). Note:

6

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/4-generalized-eigenvalue-problem/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/4-generalized-eigenvalue-problem/notes-generalized-eigenvalue-problem.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/5-linear-ODEs-and-matrix-exponentiation/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/5-linear-ODEs-and-matrix-exponentiation/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/6-nonnormal-transient-amplification/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/7-Jordan-form/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/7-Jordan-form/notes-ODEs-and-Jordan-form.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/7-Jordan-form/jordan_demo_out.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/03-Eigenvalues-eigenvectors/7-Jordan-form/more/computing-Jordan-form-Enrico-Arbarello.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/

eigenvectors of a symmetric matrix A = AT are orthogonal because this matrix is
also normal, see proof in notes, appendix §B.

(d) Geometric interpretation of SVD for the particular case of a real square matrix
with a positive determinant (notes §4.3.2; see animation and caption from
Wikipedia by Kieff, with some more details here.)

(e) SVD applications

i. Image compression, low-rank approximation, (notes §4.5; Str§6.3, code:
SVD applications image compression.m/py), variance explained.

ii. Effective rank of a matrix (notes §4.9.1; Str§6.3, matrix condition number
and norm (Str§7.2). Code,
SVD applications matrix rank norm condition number.m/py).

iii. Polar decomposition (notes §4.7; Str§6.3). Applications exist in computer
animation (notes §4.7.1), comparing protein structures (notes §4.7.2),
continuum mechanics, robotics, and more.

A. A simple demo,
SVD applications polar decomposition example.m/py, of the
geometric interpretation of polar decomposition.

B. Computer animation (notes §4.7.1;
SVD applications polar decomposition animation.m/py)

C. The polar-decomposition-based Kabsch Algorithm for comparing
protein structures using the root-mean-square deviation method
(notes §4.7.2, (Kavraki, 2007, p 1-5), and a demo,
SVD applications polar decomposition Kabsch example.m/py).

D. Proof that polar decomposition of the correlation matrix between
molecule coordinates is indeed the optimal rotation matrix (notes §4.7.2.

iv. When the number of unknowns is different from the number of equations:

A. Overdetermined systems: more equations than unknown and least
squares. (i) Brief reminder (notes §4.9.2). (ii) Using QR decomposition
(cover it first if it was not covered in the eigenvalue/ vector section) for
an efficient solution of least-square problems (Str§7.3).

B. Under-determined systems, more unknowns then equations: pseudo
inverse solution using SVD and a short proof that it is indeed the
smallest-norm solution (notes §4.9.5; Str§6.3; example,
SVD application underdetermined linear eqns.m/py).

C. Rank-deficient over-determined or under-determined systems:
r < min(N,M) (notes §4.9.6).

D. A review of all types of linear equations using the demo
Review examples linear equations.m/py.

v. PCA using SVD: (notes §4.11.1) and an example,
PCA small data example using SVD.m/py.

7

https://en.wikipedia.org/wiki/Singular_value_decomposition#/media/File:Singular_value_decomposition.gif
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/2-geometric-interpretation/Singular-Value-Decomposition-geometric-intepretation-Wikipedia.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/3-image-compression/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/4-matrix-rank-norm-condition-number/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/5-polar-decomposition/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/5-polar-decomposition/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/5-polar-decomposition/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/6-overdetermined-and-underdetermined-linear-eqns/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/6-overdetermined-and-underdetermined-linear-eqns/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/7-PCA-MCA/

vi. Multivariate Principal Component Analysis and Maximum Covariance
Analysis (MCA): analysis of two co-varying data sets. E.g., M stocks from
NY and L stocks from Tokyo, both given for N times: Ymn, Tln (notes
§4.11.2; Matlab/python demos in Sources).

vii. The Netflix challenge part I: latent factor models and SVD. First,
highlighted text and Figs. 1 and 2 on pp 43-44 of Koren et al. (2009); then,
notes §4.13; finally, example code, SVD applications Netflix.m/py.
[Optional: information on the fuller procedure in highlighted parts of
section 6.1 of Vozalis and Margaritis (2006) available here; Instead of eqn
(4) in Vozalis, let the predicted rating of movie a by user j be
praj =

∑n
i=1 simji(rrai + r̄a)/(

∑n
i=1 |simji|), where simji is the similarity

between the ratings of movies i, j by all users, and the sum is over movies].

5. Similar items and frequent patterns. Sources. Notes: chapter 5.

(a) Motivation for similar items: face recognition, fingerprint recognition, comparing
texts to find plagiarism, Netflix movie ratings. (MMD§3)

(b) Similar items:

i. Jaccard Similarity index (MMD§3.1.1 p 74; demo,
Jaccard examples.m/py, for logicals, numbers, text files).

ii. Converting text data to numbers: Shingles, k-shingles, hashing, sets of
hashes (MMD§3.2 p 77-80; section 1 of notes and corresponding
Matlab/python demo of an oversimplified hash function; another demo,
crc32 demo.m/py, for the Cyclic Redundancy Check (crc32) hash function)

iii. Matrix representation of sets (MMD§3.3.1 p 81)

iv. (Time permitting:) MinHash algorithm for comparing sets (MMD§3.3 p
80-86, and section 2 of notes with summary of MinHash steps)

A. Minhashing: creating a similarity-conserving signature matrix that is
much smaller than the original data matrix, and that allows for an
efficient comparison of sets. Signature matrix is based on a set of
random permutations of the rows of the data matrix
(MMD§3.3.2,§3.3.4 p 81-83)

B. “Proof” that the probability of having similar MinHash signatures of
two sets is equal to the Jaccard similarity of the two sets (MMD§3.3.3
p 82-83)

C. MinHash signature estimated using a set of random hash functions
acting on the data matrix (MMD§3.3.5 p 83-86)

D. Additional resources: code,
MinHash and signature matrix example.m/py, for calculating
signature matrix and using it to estimate Jaccard similarity; A more
elaborate example python code by Chris McCormick, run using spyder)

8

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/8-Netflix/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/04-PCA-SVD/SVD/8-Netflix/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/1-similar-items/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/1-similar-items/notes-hash-functions-and-MinHash-summary.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/1-similar-items/simple_hash_function.m/py
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/1-similar-items/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/1-similar-items/notes-hash-functions-and-MinHash-summary.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/1-similar-items/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/1-similar-items/MinHash-pyhton-example-Chris-McCormick/

E. Locality-Sensitive Hashing (LSH, MMD§3.4-3.8)

(c) (Time permitting:) Motivation for frequent patterns: market basket analysis:
hot dogs and mustard, diapers and beer; frequently combined Internet searches:
Brad and Angelina; medical diagnosis: biomarkers in blood samples and
diseases; detecting plagiarism. (MMD§6)

(d) Frequent patterns and association rules.

i. Mining frequent patterns (and association rule learning): support for set I
(number of baskets for which I is a subset); I is frequent if its support is
larger than some threshold support s; (MMD§6.1 p 201-206)

ii. Association rules I → j between a set I and an item j; confidence (fraction
of baskets with I that also contain j) and interest (difference between
confidence in I → j and fraction of baskets that contain j);
(MMD§6.1.3-6.1.4)

iii. Apriori algorithm: (MMD§6.2, highlighted parts on p 209-217)

A. Baskets as sets of numbers (MMD§6.2.1 p 209)

B. Monotonicity of itemsets (MMD§6.2.3 p 212)

C. A-priory first pass; renumbering of relevant itemsets between passes;
and second pass to identify frequent pairs (MMD§6.2.5; a simple code,
apriori example.m/py)

D. Beyond frequent pairs: larger frequent itemsets (MMD§6.2.6)

E. Example of finding association rules via A-priori algorithm, Matlab code
by Narine Manukyan, run using demoAssociationAnalysis;

6. Unsupervised learning: cluster analysis. Sources. Notes: chapter 6.

(a) Motivation: Archaeology/Anthropology; Genetics; TV marketing; Criminology;
Medical imaging; Internet/ social networks; Internet search results; Weather and
climate.

(b) Overview: Two main approaches to clustering: hierarchical (each point is an
initial cluster, then clusters are being merged to form larger ones) and
point-assignment (starting with points that are cluster representatives,
clusteroids, and then adding other points one by one). Other considerations:
Euclidean vs non, and large vs small memory requirements (MMD§7.1.2, p
243).

(c) Distances/ metrics (notes §6.2)

i. Requirements from a distance: MMD§3.5.1, p92-93.

ii. Examples of distance functions (MMD§3.5, p 93–97): Euclidean (L2

distance), Lr distance, Manhattan (sum of abs values, L1 norm), maximum
(L∞), Hamming distance between two strings of equal length or between
vectors of Booleans or other vectors, cosine (difference between angles),

9

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/2-frequent-patterns/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/05-Similar-items-and-frequent-patterns/2-frequent-patterns/Apriori-AssociationRules-Narine-Manukyan/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/06-Cluster-analysis/

Jaccard distance (one minus Jaccard similarity), edit. Noting that
“average” distance does not necessarily exist in non-Euclidean spaces (p97).

(d) Curse of dimensionality: problems with Euclidean distance measures in high
dimensions, where random vectors tend to be far from each other and
perpendicular to each other, making clustering difficult (notes §6.3; MMD§7.1.3
p 244-245, code: curse of dimensionality.m/py)

(e) Hierarchical clustering (notes §6.5): intro and example (MMD§7.2.1, Figs 7.2,
7.3, 7.4, 7.5, and the resulting dendogram in Fig 7.6), efficiency (MMD§7.2.2, p
248–249), merging and stopping criteria (MMD§7.2.3), in non Euclidean spaces
using clustroids (MMD§7.2.4, p 252–253). (Use
run hierarchical clustering demos.m/py to run three relevant demos: First
detailed hand calculation, then the example script run first with argument (2)
and then with (20). The hierarchical clustering simpler example.m/py

code there is a bare-bone version that can be useful in HW)

(f) K-means algorithms (notes §6.7): these are point-assignment/ centroid-based
clustering methods.

i. Basics (MMD§7.3.1),

ii. Initialization (MMD§7.3.2; e.g., initialize centroids on k farthest neighbors)

iii. Choosing k (MMD§7.3.3).

iv. Demos: using run kmeans clustering demos.m/py, first a detailed hand
calculations and then the a more detailed example.

(g) Self-organizing maps (“Kohonen maps”, a type of an artificial neural network;
notes §6.9).

(h) Mahalanobis distance: first for stretched data, diagonal covariance matrix, then
non-diagonal, stretched and rotated (notes §6.11).

(i) Spectral clustering into two or more sub-clusters (notes §6.13). Such clustering
using eigenvector 2 was already covered for networks, using the Laplacian
matrix of the network, in the eigenvalues/ eigenvectors section.

i. First a reminder of network clustering (notes §3.6).

ii. Then for clustering of other data: Form a distance matrix sij = |xi − xj|,
defined here as the distance between points i and j in the set; then a
“similarity” matrix (equivalent to adjacency matrix in network clustering)
using, e.g., wij = exp(−s2ij/σ2), then a diagonal degree matrix di =

∑
j wij,

and finally the Laplacian matrix L = D−W (highlighted parts in p 1-4 of
Von-Luxburg (2007)

iii. A proof that the quadratic form xTLx is equal to the sum over squared
differences of linked pairs (Proposition 1 on p 4 of Von-Luxburg, 2007)

iv. Demos of dividing data into two clusters, first two examples in
run spectral clustering examples.m/py.

10

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/06-Cluster-analysis/1-distances-and-curse-of-dimensionality/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/06-Cluster-analysis/2-hierarchical-clustering/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/06-Cluster-analysis/2-hierarchical-clustering/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/06-Cluster-analysis/3-k-means/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/06-Cluster-analysis/6-spectral-clustering/

v. Two options for dividing data into more than two clusters: (1) Wikipedia
adds that “The algorithm can be used for hierarchical clustering by
repeatedly partitioning the subsets in this fashion”. (2) More interestingly,
can also cluster into k > 2 parts using eigenvectors 2 to k, see box on
section 4 on p 6 of Von-Luxburg (2007), and the third example in
run spectral clustering examples.m/py.

vi. Benefit: clustering n data vectors that are only (k − 1)-dimensional
[eigenvectors 2–k]; Much more efficient than clustering original n
d-dimensional data points where d could be much larger than (k − 1).

(j) BFR: Clustering large data sets that cannot be fully contained in memory: BFR
algorithm and Summarization (notes §6.15; MMD§7.3.4 and 7.3.5, p 257 to
middle of 261)

(k) CURE (Clustering Using REpresentatives), for clusters that have complex
shapes, such as concentric rings. This is a point-assignment clustering
algorithm, like k-means, not relying on centroids but on a set of representative
points that span an entire complex-shaped cluster (notes §6.16; MMD§7.4, p
262–265; and several demos using run CURE examples.m/py of Hierarchical
clustering based on an appropriate distance measure to find the representatives
and then point assignment to cluster the rest of the data)

(l) Outlier/ anomaly detection: a brief overview only. Motivation: unusual credit
activity as an indication of credit card theft. Detection using statistical
methods, e.g., assuming Gaussian distribution.

7. Supervised learning: classification. Sources. Notes: chapter 7.
(We stick to Euclidean distances for now, other options were discussed under cluster
analysis).

(a) Motivation: Optical character recognition, handwriting recognition, speech
recognition, spam filtering, language identification, sentiment analysis of tweets
(e.g., angry/ sad/ happy), amazon book recommendation, Netflix challenge,
online advertising and ad blocking on Internet sites, credit scores, predicting
loan defaulting, and Mastering the game of Go!

(b) Machine learning Introduction (MMD§12.1, p 439-443)

(c) Perceptrons: Intro (notes §7.2; MMD§12.2 p 447); zero threshold (MMD§12.2
first two paragraphs, 12.2.1, p 448–450); allowing threshold to vary
(MMD§12.2.4, p 453); problems (MMD§12.2.7, simply show
Figs. 12.11,12.12,12.13 on p 457–459). Use
perceptron classification example.m/py, see comments at top of code for
useful cases to show; for adjustable step I made step size (η) proportional to
deviation of current data point that’s not classified correctly (η = |x ·w − θ|),
but bounded on both sides, say 0.01 < η < 1.

11

http://en.wikipedia.org/wiki/Spectral_clustering
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/06-Cluster-analysis/6-spectral-clustering/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/06-Cluster-analysis/8-CURE/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/1-perceptrons/

(d) Support vector machines (notes §7.3; MMD§12.3, p 461-469);

i. Introduction, formulation for separated data sets, formulation for
overlapping data sets, solution via gradient method and a numerical
Example 12.9 of the final algorithm

ii. Misc Matlab/python demos, run all relevant ones using
run SVM demos.m/py.

(e) A brief introduction to Multi-Layer Artificial “feed forward” Neural Networks
(notes §7.4):

i. Motivation: these are based on a powerful extension of the perceptron idea,
and allow computers to perform image/ voice/ handwriting/ face
recognition, as well as Mastering the game of Go.

ii. Introduction: perceptron as a neural network with no hidden layers; failure
of perceptron for XOR, and success using one hidden layer and a simple
nonlinear activation function; a general one-hidden layer formulation
(highlighted parts of the introductory notes by Lee Jacobson)

iii. Details: architecture (including number of layers, number of nodes in each
layer, geometry of connections between nodes); example activation
functions: tansig, sigmoid, rectified linear, softplus; selecting output layer
activation function based on need for (1) regression (linear output layer),
(2) a yes or no (sigmoid output layer), (3) a discrete set of labels using a
softmax output layer plus Matlab’s vec2ind (on-line demo), (Goodfellow
et al. (2016), §6.2.2, p 181–187; the activation functions are plotted by
neural networks0 activation functions examples.m/py and in
Goodfellow et al. (2016), §3.10, and Figs. 3.3, 3.4, p 69)

iv. Matlab/python demos, use run neural network demos.m/py to run all, stop
just before backpropagation demos which are shown later.

A. Understanding the internals of Matlab/python’s neural networks using
neural networks1 reverse engineer manually.m/py.

B. Two simple example neural network Matlab/python example codes for
classification,
neural networks2 simple 2d classification example.m/py and
regression, neural networks3 simple 2d regression example.m/py,
and then a failed network,
neural networks4 simple 2d FAILED classification example.m/py,
to show how this can be diagnosed.

C. An example,
neural networks5 character recognition example appcr1 Mathworks.m/py,
that demonstrates character recognition using Matlab’s neural network
toolbox.

v. Back-propagation! (notes §7.4.3) Calculating the cost gradient with respect
to weights and biases (Nielsen)

12

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/2-support_vector_machines/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/more/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/1-intro-to-neural-networks-Lee-Jacobson-Stanford.pdf
http://neuralnetworksanddeeplearning.com/chap3.html#softmax
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/

A. Cost function definition (Nielsen§1, eqn 6)

B. Gradient descent rule (Nielsen§1, eqns 16,17, and following two
paragraphs).

C. Back-propagation: basically all of Nielsen§2.

D. Code demos: continue running run neural network demos.m/py from
where we stopped previously, which will show the following. First, hand
calculation demonstrated in
neural networks6 backpropagaion hand calculation.m/py, of
feedforward and backpropagation, comparing to a finite-difference
estimate of gradient. Then, a full optimization of a neural network,
neural networks7 backpropagation and steepest descent.m/py,
first with MNIST=0 for a simple XOR data set, and then with 1, for an
actual hand-writing recognition data set (translated to Matlab from a
python code by Nielsen)

vi. Ways to recognize problems and choose parameters for neural networks
(notes §7.4.4)

A. Learning slow-down and the improved cross-entropy cost function that
resolves that (appropriate section of Nielsen§3, beginning to two demos
after eqn 62. Use on-line version of the chapter for the nice demos.)

B. Over-fitting, how to identify it and how to resolve it using (1) L2
regularization and (2) enlarging the training data set using random
rotations/ added noise to original data (appropriate section of
Nielsen§3)

C. Weight initialization to avoid initial saturation and increase initial
learning rate (appropriate section of Nielsen§3)

D. Choosing network’s hyper-parameters: learning rate (which may also
vary with epochs), regularization constant, mini-batch size used the
average the gradient before applying steepest descent. Trick is to first
find parameters that lead to any learning, and improve from there
(appropriate section of Nielsen§3)

E. Convolution layers and their advantages: parameter sharing, sparse
interactions (Goodfellow et al. (2016), §9.1–9.2); zero-padding in
convolution (Fig 9.13, p 351); pooling (§9.3);

(f) k-nearest neighbors (k-NN) (notes §7.6)

i. Classification: finding a label of input data based on a majority of k nearest
training data neighbors when the label is discrete such as type of dog or sick
vs healthy. Start with a single neighbor, including the Voronoi diagram
(MMD§12.4, p 472–474 including Fig. 12.21; then Mitchell (1997), Fig. 8.1,
p 233 which shows how the results of the nearest neighbor can be different
from k = 5 nearest ones)

13

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/3-neural-networks/
http://neuralnetworksanddeeplearning.com/chap3.html#the_cross-entropy_cost_function
http://neuralnetworksanddeeplearning.com/chap3.html#the_cross-entropy_cost_function
http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization
http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization
http://neuralnetworksanddeeplearning.com/chap3.html#weight_initialization
http://neuralnetworksanddeeplearning.com/chap3.html#how_to_choose_a_neural_network's_hyper-parameters

ii. Locally-weighted kernel regression: e.g., estimating house prices as function
of age and living area from similar houses (Section 1 of notes based
on Mitchell (1997), §8.3.1 p 237–238;
k NN kernel regression example.m/py)

iii. Using PCA for dimensionality reduction to avoid the curse of dimensionality
when looking for nearest neighbors in a high-dimensional space. (Section 2
of notes)

iv. k-NN application: the Netflix challenge part II (presentation by Atul
S. Kulkarni, remote and local links).

(g) Decision trees (notes §7.8, Sources):

i. Motivation, example.

ii. Discrete (categorical) labels, Gini index and CART algorithm.

iii. Continuous labels and variance minimization.

iv. Avoiding overfitting by limiting tree growth, and by pruning. Minimal
cost-complexity pruning.

v. Random forests.

vi. Information entropy, information gain, ID3 algorithm.

8. Review. Sources. Notes: chapter 8.

References

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Kavraki, L. E. (2007). Molecular distance measures. OpenStax-CNX module: m11608,
Version 1.23: Jun 11, 2007, http://cnx.org/content/m11608/1.23/.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Mining of massive datasets.
Cambridge University Press.

Mitchell, T. (1997). Machine learning. McGraw-Hill Science/ Engineering/ Math.

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.

Strang, G. (2006). Linear algebra and its applications. 4th ed. Cengage Learning.

Strang, G. (2016). Introduction to linear algebra. 5th ed. Wellesley-Cambridge Press.

Strang, G. (2019). Linear Algebra and Learning from Data. publisher TBD.

14

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/4-k-NN/notes-Kernel-regression.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/4-k-NN/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/4-k-NN/notes-Kernel-regression.pdf
http://www.d.umn.edu/~kulka053/Presentation_full.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/4-k-NN/k-NN-classification-and-Netflix-Atul-S-Kulkarni_U_minnesota-Duluth.pdf
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/07-Classification/5-decision_trees/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/08-Review/
http://www.deeplearningbook.org

Strogatz, S. (1994). Nonlinear dynamics and chaos. Westview Press.

Trefethen, L. N. and Bau III, D. (1997). Numerical linear algebra, volume 50. Siam.

Von-Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing,
17(4):395–416.

Vozalis, M. G. and Margaritis, K. G. (2006). Applying SVD on generalized item-based
filtering. IJCSA, 3(3):27–51.

15

	Administrative
	Outline
	Syllabus
	3.1. Introduction, overview
	3.2. Linear equations
	3.3. Eigenvalues, eigenvectors
	3.4. Principal component analysis, Singular Value Decomposition
	3.5. Similar items and frequent patterns
	3.6. Unsupervised learning: cluster analysis
	3.7. Supervised learning: classification
	3.8. Review

